How a single residue in individual β-thymosin/WH2 domains controls their functions in actin assembly.
نویسندگان
چکیده
β-Thymosin (βT) and WH2 domains are widespread, intrinsically disordered actin-binding peptides that display significant sequence variability and different regulations of actin self-assembly in motile and morphogenetic processes. Here, we reveal the structural mechanisms by which, in their 1:1 stoichiometric complexes with actin, they either inhibit assembly by sequestering actin monomers like Thymosin-β4, or enhance motility by directing polarized filament assembly like Ciboulot βT. We combined mutational, functional or structural analysis by X-ray crystallography, SAXS (small angle X-ray scattering) and NMR on Thymosin-β4, Ciboulot, TetraThymosinβ and the long WH2 domain of WASP-interacting protein. The latter sequesters G-actin with the same molecular mechanisms as Thymosin-β4. Functionally different βT/WH2 domains differ by distinct dynamics of their C-terminal half interactions with G-actin pointed face. These C-terminal interaction dynamics are controlled by the strength of electrostatic interactions with G-actin. At physiological ionic strength, a single salt bridge with actin located next to their central LKKT/V motif induces G-actin sequestration in both isolated long βT and WH2 domains. The results open perspectives for elucidating the functions of βT/WH2 domains in other modular proteins.
منابع مشابه
The β-Thymosin/WH2 Domain Structural Basis for the Switch from Inhibition to Promotion of Actin Assembly
The widespread beta-thymosin/WH2 actin binding domain has versatile regulatory properties in actin dynamics and motility. beta-thymosins (isolated WH2 domain) maintain monomeric actin in a "sequestered" nonpolymerizable form. In contrast, when repeated in tandem or inserted in modular proteins, the beta-thymosin/WH2 domain promotes actin assembly at filament barbed ends, like profilin. The stru...
متن کاملHow a single residue in individual b-thymosin/ WH2 domains controls their functions in actin assembly
Dominique Didry, Francois-Xavier Cantrelle, Clotilde Husson, Pierre Roblin, Anna M Eswara Moorthy, Javier Perez, Christophe Le Clainche, Maud Hertzog, Eric Guittet, Marie-France Carlier, Carine van Heijenoort* and Louis Renault* Laboratoire d’Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, Gif-sur-Yvette, France, Institut de Chimie des Substances Naturelles, Centre de R...
متن کاملStructural basis of actin sequestration by thymosin-beta4: implications for WH2 proteins.
The WH2 (Wiscott-Aldridge syndrome protein homology domain 2) repeat is an actin interacting motif found in monomer sequestering and filament assembly proteins. We have stabilized the prototypical WH2 family member, thymosin-beta4 (Tbeta4), with respect to actin, by creating a hybrid between gelsolin domain 1 and the C-terminal half of Tbeta4 (G1-Tbeta4). This hybrid protein sequesters actin mo...
متن کاملActin binding to WH2 domains regulates nuclear import of the multifunctional actin regulator JMY
Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. In response to DNA damage, JMY accumulates in the nucleus and promotes p53-dependent apoptosis. JMY's actin-regulatory activity relies on a cluster of three actin-binding Wiskott-Aldrich syndrome protein homology 2 (WH2) domains that nucleate filaments directly and also promote nucl...
متن کاملCordon-Bleu uses WH2 domains as multifunctional dynamizers of actin filament assembly.
Cordon-Bleu is, like Spire, a member of the growing family of WH2 repeat proteins, which emerge as versatile regulators of actin dynamics. They are expressed in morphogenetic and patterning processes and nucleate actin assembly in vitro. Here, we show that Cordon-Bleu works as a dynamizer of actin assembly by combining many properties of profilin with weak filament nucleating and powerful filam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2012